منابع مشابه
Exploiting Bounded Staleness to Speed Up Big Data Analytics
Many modern machine learning (ML) algorithms are iterative, converging on a final solution via many iterations over the input data. This paper explores approaches to exploiting these algorithms’ convergent nature to improve performance, by allowing parallel and distributed threads to use loose consistency models for shared algorithm state. Specifically, we focus on bounded staleness, in which e...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملFirework: Data Processing and Sharing for Hybrid Cloud-Edge Analytics
Now we are entering the era of the Internet of Everything (IoE) and billions of sensors and actuators are connected to the network. As one of the most sophisticated IoE applications, real-time video analytics is promising to significantly improve public safety, business intelligence, and healthcare & life science, among others. However, cloudcentric video analytics requires that all video data ...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملDistributed Intelligence for Physical Networks: Sensing, Data and Analytics, Control, and Platforms Part 2: Data and Analytics
Physical networks such as electric power grids that have both structure and dynamics generate huge volumes of data as the amount of instrumentation and the number of intelligent edge devices capable of generating both data and event messages increases, to the point where managing the data and extracting information from it become “big data” problems. Dealing with the big data problem for such s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ACM on Measurement and Analysis of Computing Systems
سال: 2020
ISSN: 2476-1249
DOI: 10.1145/3392156